Fyrimynd:Intorient/doc
Fyrimynd:Documentation subpage
This template is used to include the oriented integrals around closed surfaces (or hypersurfaces in higher dimensions), usually in a mathematical formula. They are additional symbols to \oiint and \oiiint which are not yet rendered on wikipedia.
Arguments
- preintegral the text or formula immediately before the integral
- symbol the integral symbol,
Select one of... Arrow up, integrals over a closed Arrow down, integrals over a closed 1-surface 2-surface 3-surface 1-surface 2-surface 3-surface Clockwise
orientationoint=
oiint=
oiiint=
varoint=
varoiint=
varoiiint=
Counterclockwise
orientationointctr=Feilur við upprættan av thumbnail (lítlari mynd): oiintctr=
oiiintctr=
varointctr=Feilur við upprættan av thumbnail (lítlari mynd): varoiintctr=
varoiiintctr=
- intsubscpt the subscript below the integral
- integrand the text or formula immediately after the formula
All parameters are optional.
Examples
- The work done in a thermodynamic cycle on an indicator diagram: Fyrimynd:Intorient
{{intorient
| preintegral=<math>W=</math>
| symbol = varoint
| intsubscpt = <math>{\scriptstyle \Gamma}</math>
| integrand = <math>p{\rm d}V</math>
}}
{{intorient|
| preintegral =
|symbol=varoint
| intsubscpt = <math>{\scriptstyle \Gamma}</math>
| integrand = <math>\frac{{\rm d}z}{(z+a)^3z^{1/2}}</math>
}}
- Line integrals of vector fields: Fyrimynd:Intorient
{{intorient|
| preintegral = {{intorient|
| preintegral =
|symbol=oint
| intsubscpt = <math>{\scriptstyle \partial S}</math>
| integrand = <math>\mathbf{F}\cdot{\rm d}\mathbf{r}=-</math>
}}
|symbol=ointctr
| intsubscpt = <math>{\scriptstyle \partial S}</math>
| integrand = <math>\mathbf{F}\cdot{\rm d}\mathbf{r}</math>
}}
- Other examples: Fyrimynd:Intorient
{{Intorient|
| preintegral =
|symbol=oiiintctr
| intsubscpt = <math>{\scriptstyle \Sigma}</math>
| integrand = <math>(E+H\wedge T) {\rm d}^2 \Sigma</math>
}}
{{Intorient|
| preintegral =
|symbol=varoiiintctr
| intsubscpt = <math>{\scriptstyle \Omega}</math>
| integrand = <math>(E+H\wedge T) {\rm d}^4 \Omega</math>
}}
Sí eisini
Non-oriented boundary integrals over a 2-surface and 3-surface can be implemented respectively by: